If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18d^2-54d+28=0
a = 18; b = -54; c = +28;
Δ = b2-4ac
Δ = -542-4·18·28
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-54)-30}{2*18}=\frac{24}{36} =2/3 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-54)+30}{2*18}=\frac{84}{36} =2+1/3 $
| 3/5x-11/7=(7x+1)/2 | | 5^4=9x | | 2t^2+63t+145=0 | | 2^x-3=4^3x-1 | | 17+3x=86 | | 3x|3=10 | | x-11/4=-2 | | (x+5)5=(10+7)7 | | 24x-33=24x-78 | | 8x+5x=8 | | 8.91x+80.19=160.38 | | 8(-x-3)+2=-26-8x | | 10x^2-85x-150=0 | | 7+x=11x-10(x+4) | | 1.5(x)=x+1500 | | -1/2x+4/5=3+1/9x | | 0=3x+20 | | x^2=2(6+2) | | 7/8k-4/5=7+1/9k | | -j^2-9j-9=0 | | m/15+65=23 | | 5x2-51=-2x | | 5+-1x=-1x-(-1x)-(-1x)+8 | | (2x-15)(9x+14)=0 | | 4/3=11/k | | 88/40=22/x | | X^=6x-10 | | 3/2m+3/8=5/4+9/2m | | 5x2-51-2x=0 | | 2w2–4w–170=0 | | 0.5(n+4)−3=13 | | -47=-2x+7x-2 |